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SUMMARY

A three-dimensional six-degree-of-freedom trajectory simulation applicable to
preliminary stability and control studies of vehicles having large multi-engine boosters
is formulated. The simulation employs rigid body equations of motion referenced to a
special set of body axes known as Euler axes, an orthogonal right-handed triad having
its origin at the instantaneous center of gravity of the vehicle. Fuel sloshing and elas-
ticity effects are ignored. Simplifications are kept to 2 minimum in the derivation of
the basic equations; consequently, the complexity of the simulation can be varied by
assigning zero values to certain parameters. The aerodynamic characteristics of the
vehicle are assumed to be a function of both Mach number and angle of attack. Vehicle
mass and inertia characteristics are assumed to be time variant, Winds of arbitrary
velocity and direction are incorporated into the simulation.

Artificial stabilization is assumed to be provided by thrust vector control and
application of the drift-minimum or load-minimum principle, although other control
modes can be applied. Thrust forces are resolved in a manner which allows arbitrary
location of the engines, except for the restrictions that the engine array must be sym-
metrical with respect to the vehicle center line and gimbal points must lie in a plane
perpendicular to the center line.

The simulation will provide basic systems design information concerning the
dynamic behavior of specific configurations with emphasis being placed primarily on
the boost phase of flight. The basic information desired is the engine gimbal angles
necessary for stabilization and the responsive motion of the vehicle to a specified
disturbance. A numerical example is included which illustrates the application and
flexibility of the simulation. Results are compared where possible with a typical two-
dimensional simulation.



SECTION I. INTRODUCTION

Conventional body of revolution type vehicles are generally aerodynamically unstable
since the center of pressure of the body alone is near the shoulder of the nose fairing,
while the center of gravity is nearer the base. In the past, many vehicles have been
stabilized by the addition of fins to the body, or by a combination of fins and spinning
the vehicle in flight (Ref. 1). The provision of complete fin stabilization becomes less
attractive with increasing size of the vehicle, for example those employed in manned
space flight missions, because of large weight penalties and hecause the increasing fin
span interferes with launching equipment. However, in some cases, relatively small
fins may be used advantageously as a means of decreasing instability and reducing the
load imposed on the main control system. Spin stabilization is rarely even considered
for large vehicles, especially those using liquid propellants because of the resulting
fuel sloshing and centrifugal force problems.

Artificial stabilization by means of a control system, rather than the provision
of a stable airframe, appears to be the best approach for large vehicles (Ref. 2). Such
a control system requires control torques which may be produced by air vanes, jet vanes,
engine gimbaling, and several other means or combinations of thesc. Control by engine
gimbaling, sometimes referred to as thrust vector control, has been successfully em-
ployed in several large vehicles and appears to be attractive for those of the future.
Consequently, only gimbal control is considered in this report. The limiting of maximum
required control deflections to reasonably small values is important in view of the in-
creasing complexity of gimbal bearings, adequate closure of the vehicle's hase for
protection from base heating, and structural requirements for engine mounts and air-
frame (Ref, 2).

Since the success of a mission often depends on proper attitude stabilization of the
vehicle, control requirements and restrictions need to be considered during the prelim-
inary design phase when the basic vehicle configuration is established. Such studies
should be as simplified as the desired degree of accuracy allows. Furthermore the
methods used should be quite flexible to cope with the variety of configurations usually
encountered.

A unique method of artificial stabilization of aerodynamically unstable vehicles
known as the "drift minimum principle' (Ref. 3) has been widely used in preliminary
control investigations and is of considerable current interest (Refs. 4 and 5). Appli-
cation of this scheme renders the vehicle path almost insensitive to wind forces, which
are the primary source of disturbance during the early stages of flight. This principle
utilizes linear control equations in which the so-called control gains are predetermined
in a specified manner for each vehicle. A variation of the principle, in which temporary
path instability is allowed in order to reduce the loads on the vehicle, is referred to as



the "load-minimum principle." Both the load-minimum and drift-minimum control
modes are discussed more recently in Reference 6, with two other possible control
schemes. A more generalized discussion of the problems of attitude stabilization for
large guided missiles can be found in Reference 2.

Preliminary vehicle design applications of the above principles have been almost
entirely restricted to two-dimensional, planar analyses. Consequently, these studies
are limited to independent investigations of pitch, yaw, and roll motions, with roil
motion frequently neglected entirely. Analyses of this type are partially justified for
symmetrical configurations. For non-symmetrical vehicles, which could be the case
for configurations carrying winged payloads for manned space flight, a three-dimensional
analysis of the dynamic motion is nccessary to study the aerodynamic and coupling effects
properly (Ref. 7). In a three-dimensional simulation, pitch, yaw, and roll motions are
examined simultancously. For multi-engine boosters, threc dimensions are often neces-
sary to resolve the thrust forces and moments properly.

In the two-dimensional analyses, flight conditions must be assumed constant in all
planes of motion except the plane being considered. Often the vehicle aerodynamic
characteristics are assumed to be constant (Ref. 2) although the Mach number and angle
of attack may be changing. Furthermore, wind disturbances in the two-dimensional
analyses are necessarily restricted to constant direction and it is assumed that a direct
side wind results in the maximum yaw disturbance. In Reference 8, however, it was
found that in most cases, the maximum yaw dispersion does not coincide with a direct
side wind. Winds of arbitrary velocity and direction are easily incorporated in a three-
dimensional simulation (Ref, 9).

Restricted three-dimensional equations, with linear thrust vector control, are
formulated in Reference 10, but are not suitable for studies involving multi-engine
vehicles. Previous studics involving multi-engine vehicles have been limited to a
particular engine arrangement (Ref. 4). The literature reviewed indicates that there
is a need for a three-dimensional trajectory simulation, applicable to stability and
control studies, incorporating variable wind, variable aerodynamics, and arbitrary
engine arrangement.

This study formulates a general three-dimensional six-degree-of-freedom trajec-
tory simulation applicable to stability and control studies of vehicles having large multi-
engine boosters. The simulation is formulated in a manner allowing arbitrary location
of the engines with respect to the center line of the vehicle, except for the restrictions
that the engine array must be symmetrical, and gimbal points must lie in a plane per-
pendicular to the center line. The vehicle is assumed to be a rigid body relying on
artificial stabilization by thrust vector control. Elasticity and fuel sloshing effects
are ignored.



The simulation will provide basic systems design information concerning the
dynamic behavior of specific configurations with emphasis primarily on the boost phase
of flight. The basic information desired is the engine gimbal angles necessary for
stabilization and the responsive motion of the vehicle to a specified disturbance. A
linear control system is assumed and two control modes, namely, the drift-minimum
and load-minimum principles (Ref. 6), are considered.

A ficticious, but realistic, vehicle is postulated as an illustrative example and
typical results are presented. The results are compared, where possible, with typical
two-dimensional results. Indications are that the simulation derived in this study
satisfies the intended purpose and is adequate for preliminary stability and control
studies of large multi-engine vehicles.

SECTION II. COORDINATE SYSTEMS

A. COORDINATE DESCRIPTION

The choice of coordinate systems and the methods of coordinate resolution
are extremely important in the formulation and solution of any system of equations.
Several coordinate systems used in solving the three-dimensional flight equations have
been investigated in Reference 11, The conclusion is reached that the best axis system
from the standpoint of simplicity is one employing wind axes for translational equations
and body axes for rotational equations. Such a procedure is rarely employed, however,
because confusion is inevitable when different axis systems are used for the two sets of
equations.

Wind axes have long been used in analytical stability and control studies (Ref. 12)
to take advantage of the resulting simplifications in the equations of motion. However,
since wind axes are not fixed with respect to the body, it is necessary either to assume
that the time rate of change of the moments and products of inertia is negligible,
formulate an auxiliary expression for their time dependency; consequently, a special
set of body axes known as Euler axes is used in this study.

The Euler axis system (Ref. 13) is associated with an orthogonal right-handed
triad having its origin at the instantaneous center of gravity of the vehicle as shown in
Figure 1,

The X-direction is positive along the longitudinal axis pointing forward. The Y
and Z directions are the pitch and yaw axes, respectively, with the Y-axis positive to
the right looking in the flight direction. With respect to the Euler axis system, the
vehicle has linear and angular velocities and accelerations but no displacements. This
system is especially adaptable to studies of rigid body flight dynamics since the velocities
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FIGURE 1. ILLUSTRATION OF VEHICLE BODY AXES



measured with respect to these axes are the same as the velocities that are measured
by instruments mounted in the vehicle. Another advantage of this system, as opposed
to wind axes, is that the moments and products of inertia are independent of time,
except for changes in the vehicle's mass.

Another set of axes used in establishing the equations of motion is referred to
as earth-fixed axes. A flat, non-rotating earth is assumed for this study so that the
earth-fixed axis system is actually an inertial system which is needed when applying
Newton's Laws. For a flat earth, these axes are at all times parallel to the axcs of the
vehicle's stahilized platform.

In the earth-fixed system (Xg, Yg, Zg), the Zg axis is the vertical axis being
positive in the opposite direction of gravity. The Xg axis is defined by the desired
flight azimuth with the Yg axis completing the right-handed orthogonal system,

A third system, often needed in connection with aerodynamic parameters, is
the stability or experimental axis system. This system is commonly used in wind
tunnel facilities and the like for referencing aerodynamic data. However, depending
upon model instrumentation, such data can also be referenced to body axes. For this
study, it is assumed that all aerodynamic parameters are referenced to the body or
Euler axis system.

B. COORDINATE RESOLUTION

Before going into a derivation of the equations of motion, it is desirable to
develop the transformations relating the body and earth-fixed coordinate systems. As
yet, no parameters have been defined for relating the two. For this purpose, the Euler
angles &, ., and | are introduced and will be referred to as the pitch, yaw, and roll
angles, respectively. Euler devised a method of rotating an axis system successively
about its own axes so that at the end of the third rotation the system is parallel to a
second specified axis system. Care must be taken in using Euler angles since they do
not obey the commutative law thereby requiring that a specified sequence of rotation be
maintained throughout a particular analysis.

A standardized Euler sequence has been used in formulating the three-dimensional
flight equations for aircraft and unguided vehicles (Refs. 7, 9, and 11). This particular
sequence has the order yaw, pitch, and roll with the pitch angle referenced to the hori-
zontal plane. By a twist of fate, all Euler sequences have a singularity when the second
rotation is exactly +90°. The singularity is a zero in the denominator of one of the
equations relating the angular velocity components of the vehicle to the time rate of
change of the Euler angles (Ref. 11). Consequently, the conventional sequence used
for studies involving aircraft and unguided vehicles has a singularity at o= +90°, and
is obviously unsuitable for vertically launched vehicles. As a result of this situation,

a different Euler sequence is used in the present study. The rotational order for this
study is 0, ., and © (pitch, yaw, roll) with 5 being referenced to the vertical Zg axis,



It is pointed out in the development of the transformation equations that this system has a
a singularity at ¥ = +90°, a condition that is not likely to occur.

An arbitrary orientation of body and earth-fixed axes is shown in Figure 2 with
the Euler angles indicated. Also shown are the axes about which the time rates of
change of the Euler angles are measured. It should be noted that these axes are not
mutually orthogonal, thus explaining why the Euler sequence is not commutable. In
their original positions, X coincides with Zg and Z coincides with Xg while Y and Yg
are 180° out of phase. Any arbitrary orientation of the body and earth-fixed axes is

obtained as follows:

1. Rotate about the Yg-axis through the angle 9 to define the X;, Yy, Zy system
(Fig. 3).

2. Rotate about Xy through the angle ¥ to form the X, Y;, Z, system.

3. Rotate about Z, through the angle ¢ to establish X3, Yj, Z;. The X3, Yj, and
Z3 axes correspond to the body axes Z, ~Y, and X, respectively.

The angles are positive when, in performing the rotations described, the right-

hand rule is applied.

From Figure 2, keeping in mind that initially Y and Yg are 180°® out of phase, it

can be seen that: -~

X;L=chose-zg sin 9
Yl = Yg > (la, b’ C)
Zy = Zg cos B -{-Xg sin 6

~
Xo = X3 h
Yo = Y1 cos ¥V + 2y sin ¥ > (2a, b, ¢)
Z> = Z7 cos ¥ - ¥Y; sin ¥ _J

3
X5 =2 = X2 ¢cos &+ Yy sin 0
Ys = =Y = Y5 cos 9 - Xo sin o r (3a, b, c)
Zz = X = Zs

-
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FIGURE 2. ARBITRARY ORIENTATION OF BODY
AND EARTH-FIXED AXES
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FIGURE 3. DETAILS OF EULER SEQUENCE



Combining Equations 1, 2, and 3 gives

X = Xg sin O cos ¥ - Yg sin ¥ + Zg cos 6 cos ¥ N
Y = Xg (cos 6 sin ¢ - sin 9 sin ¥ cos ) - Yg cos ¥ cos 9

- Zg (cos O cos ¢ sin ¥ + sin 8 sin 9) »(4a, b, c)
Z = Xg (cos 9 cos & + sin O sin ¥ sin o) + Yg cos ¥ osin

+ Z2g (cos 6 sin § sin ¢ - sin 8 cos D) y

Equations 4a, 4b, and 4c represent the geometric resolution of body and earth-fixed
axes. In matrix notation (Ref, 15), the transformation is

X dys dio diz | [ Xg
Y |={dz1 doo d=3 || Yg (3)
Z SEL dzo dzz | | 2g
where
d;; = sin 9 cos ¥
dis = - sin V¥
dis = cos O cos V¥
dz; = cos 9 sin 9 - sin 6 sin | cos @

doz = - cos  cos @

d23 = - (cos 6 cos & sin ¥ + sin O sin o)
ds; = cos 6 cos ¢ + sin 6 sin ¥ sin ¢
dz> = cos ¥ sin @

dz3 = cos O sin ¥ sin ¢ - sin @ cos i)

These quantities are actually the direction cosines of angles between the earth-fixed and
body axes expressed in terms of Euler angles. The methods for deriving the direction
cosine relations by means of spherical trigonometry are outlined in Reference 7, but the
approach used above presents fewer difficulties. Reference 7 also gives the orthogonality

relations

10



d11% + d1p° + dys® = 1
d21” + dz22” + do5® = 1 (6a, b, c)
ds1° + dz2° + ds5° = 1

These relations provide the means for a partial check of solutions of the equations of
motion since the values determined for the Euler angles must satisfy the equations.

The matrix operation given in Equation 5 can be inverted to transform quantities
from body to earth-fixed axes. Thus,

Xg / di1 doy d= X
Yg | = |diz doo d=o Y (7
g dyz do= d33 Z

1ne geometric transformation can only be used when transforming translational
quantities such as distance, velocity, and acceleration. In the development of the
equations of motion, the time rate of change of the Euler angles will be of interest.
Another look at Figures 1 and 2 shows that the actual axes about which the rotations take
place are Z,, Yg, and X;. The rotational resolution of this triad and the body axes is
a necessity. The angular velocities about the X, Y, and Z axes are denoted by p, q, and
r, respectively, and represent three rotational degrees-of-freedom of a rigid body. The
relative orientation of the angular velocity vectors in the two systems is illustrated in
Figure 2. From the figure, it is evident that

P B - 0 sin ¥

¥ sin ® - O cos ¥ cos b (8a, b, c)

q

r =V cos d + 9 cos Y osin O

These equations represent the rotational resolution of the triad X, Yg, Z; to the
body fixed axes. In matrix notation,

P 1 - sin V¥ 0 D
q|=!0 - cos ¥ cos ® sin o 6 9)
r 0 cos ¥ sin 2 cos & s

Inverting this matrix gives

11



8 =

cos U (r sin ¢ - q cos @)
Y = r cos ¢ + q sin @ (10a, b, ¢)
d=p+ (r sin ¢ - q cos d) tan V¥
OI"
Hob 1 - cos ¢ tan V¥ sin ¢ tan V p
i cos @ sin &
- - s 2 11
9 0 cos V cos V¥ 4 (n
j‘w 0 sin o cos P r

Equation 10a has a singularity point at ¥ = +90°. This substantiates the earlier
discussion pointing out that every Euler sequence has a singularity when the second
rotation is exactly +90°. No further transformations are necessary for this study.

SECTION III. EQUATIONS OF MOTION

A. BASIC EQUATIONS

The approach used in establishing the equations of motion is first to formulate
the general case under certain restrictions, and consider simplifications later. For
this study, the vehicle is considered a rigid body in space. Gravity is assumed to be
constant in both magnitude and direction. The earth's rotation and orbital motion are
neglected, making the earth-fixed axes an inertial system.

The assumption that the earth is fixed in an inertial reference frame ignores the
existence of the Coriolis and centripetal accelerations due to angular velocity of the
earth. Actually these two components of acceleration usually comprise only a small
portion of the total acceleration experienced by the vehicle. Since the inertial frame
is attached to the earth, additional errors result as flight progresses over the surface
of the earth., Since the assumed gravitational field is in error by the inclination of the
gravity force vector, neglecting the curvature of the earth's surface will introduce an
altitude error. If the flight time is not excessive, and flight occurs over a small part
of the earth's surface, all these errors may be neglected. These conditions are not
met by either ballistic or complete orbital trajectories. For preliminary dynamic
stability and control investigations of the boost phase of large vehicles, the area of
interest is normally limited to atmospheric flight and the assumptions above appear
justified.
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The quantities u, v, and w are actually the speeds of the center of gravity. The
shift of the center of gravity during flight, with respect to some fixed vehicle reference,
will be accounted for in the equations of motion; however, the time rate of change of
the center of gravity (the velocity of the center of gravity with respect to the vehicle)
is small and can be neglected.

Newton's laws state that the sum of the external forces and moments acting on
a rigid body can be equated to the time rate of change of linear and angular momentum,
respectively. Accordingly, the force and moment equations are:

dL - o
T_ 7T +3 +k 12)
i) F JZJFY k) F, (

L. X

IZL"‘EZM*‘E} N (13)

dt
dHT
dt

where LT and Hp are the linear and angular momentum, respectively, Fx, FY, Fgp,
and L, M, N are the force and moment components along and about the X, Y, and Z
axes, respectively.

The subscript T in the equation above refers to the total system and indicates
the inclusion of gases in the nozzle generated by burning of propellant. To take into
account the dynamic effect of the jet on the vehicle, the rate of change of linear momen-
tum must include the rate of linear momentum leaving the nozzle exit in the jet. Likewise,
the rate of change of angular momentum must include the rate of change due to gases
leaving the nozzle.

The rigid body equations of motion for flight mechanics applications under all the
assumptions made earlier, but with the additional restriction of constant mass, are
derived in References 10 and 13. Vehicle mass is variable during the boost phase of
any vehicle. The effect of mass loss has been considered by many investigators in
analyses concerning such problems as the performance of high altitude sounding rockets
and escape from the earth by a rocket (Refs. 14 and 15). In these analyses, however,
dynamic stability was not included in the area of investigation,

It has been determined, however, that the variation in mass causes so-called jet
damping forces and moments. A restricted two~dimensional analysis has been made in
Reference 15 to determine the effect of mass variation on the dynamic stability of rocket-
propelled vehicles. The vehicle involved in that study was a small, low-thrust, single-
engine rocket. The results show that a disturbance of the variable mass vehicle damps
out more rapidly than it does with the mass assumed constant, indicating that the variable
mass vehicle is more stable. The effect of jet-damping is dependent on the ratio of the

13



time rate of change of mass to the gross mass of the vehicle. Since large multi-engine
vehicles are generally aerodynamically unstable, any stabilizing effect should certainly
be considered as a means of alleviating the control problem; therefore, mass was
assumed variable in this study.

The basic three-dimensional six-degree-of-freedom equations are derived in
Reference 16 for a single-engine missile. It is shown that Equations 12 and 13 can be
expanded into the form

L, dL _
—d-t-:-=a+m(V-Ve+£2xre) (14)

and

di_  dH _ - _

E-=E+mrex(ve+9xre) (15)

whereV;3 is the velocity of the g@aust gases relative to the vehicle, 7 is the trans-
lational velocity of the vehicle, O is the rotational velocity of the vehicle, and T is
the vector distance from the instantaneous center of gravity to the center of the nozzle
exit. The mass flow rate, m, is defined as

oo . dm
m_-dt (16)

Furthermore, L and H are the linear and angular momentum neglecting the exhaust
gases,

Following the methods of Reference 17, remembering that L and H are referred
to the body axes system which is rotating with an angular velocity 0 with respect to
the earth-fixed or inertial system, the scalar components of Equations 14 and 15 for the
case of a multi-engine vehicle can be shown to be

n
ZFX = m(uU + wg - vr) +ijn (q rez - rey ) Qan
T n n
n
- S
ZFY = m(v 4+ ur - wp) +Zmn (r T, ~PT,, ) (18)
T n n
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n
.7 o

LFZ = m(w + vp - up) +}_'mn (p rey -qr, )
1 n n

QZJL = p I+ qr (1, - IY) + (pr - q) Iy - (pq + 1) I,

oo - ) . .
- (r q=) 1YZ pIX+ qIXY+rIXZ

n

(19)

\ s 2 2 + r 20
-1»Zmn [p(reyn tr,, )y + r., (q rey r ezﬂ)J (20)
1

n n n

v

\ ) ) T
) M= aLg pr(l, - 1) + (pq - ©)L,, = (p + ar) Iy

+ (p2 - r?) 1

n
- +pI.. + ) m
xz - Uy T rlyy T Plyy Zi, n
1

e ey ez
n n n n

2 =4 +
{q(rez tr Y +r (r r p reXn)J
YN o= 1 - -t + + ¢
) N =L pa(ly - L)+ (ar - B) Ty, + (4 ) Iy,
n—‘
2 2 - + pl I .
+ (q© + p7) IXY rIZ p <7 + qIYZ +§4 m
1
2 2
[r(rex +r ) +r (pr + q reyﬂ)J

ey ez ex
n n n n

where the subscript n refers to a particular engine.

These equations represent the motion along and about the X, Y, and Z axes.

@n

(22)

The

equations are complete, within the assumptions made to date, except for the external

forces and moments which appear on the left side of each equation.

One immediate simplifying assumption can be made concerning Ten where, as

defined above,

¥ =ir +JTL‘ + k r
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For single engine boosters where the nozzle center line coincides with the longi~-
tudinal axis, rey and rey are identically zero. For multi-engine vehicles with the engines
mounted symmetrically about the longitudinal axis,

n

n
= =0 23
24 reyn ZJrezn (23)
1 1

Actually Equation 23 is true only when the engines are not gimbaled. Neglecting the
small bias resulting from gimbaling or engine-out conditions, and assuming that the
engines always lie to the rear of the center of gravity, then

If it is further assumed that all nozzle exits lie in a plane approximately parallel to the
Y-Z plane, then rgx is the same for all engines and the subscript n can be dropped.
Under these assumptions, the basic equations reduce to

Z, FX = m(d + wq - vr) (24)
| n\
2,FY = m(V + ur - wp) -Lr'nn rr (25)
1
R r171
lFZ = m(w + vp - uq) +2{fnn qr,. (26)

1

-

pIy + ar(I, - I + (pr - @) Iy - (pq + 1) Ly,

L
' 2 2 AT . : (27
+ (x2 - ¢®) Iy, - pIy + alpy + rly, (27)
j = ¢ - -1 - (p + qr)l
JM=a T +pr(y - 1)+ (pq - DIy, - (B + a0)Iyy
pﬁ
: : : : 2 28
L
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\ . . .
) M= EL, 4 pa(ly - Ip) + (ar - p) I, + (pr + q) Iy,
n
+ (P + q%) Ly " tl piXZ + aqly, +Lr rex2 (29)
1

Further simplifying assumptions could be made at this point. For example, it
could be assumed that the X ~ Z plane is a plane of symmetry so that Iyy = Ixy = 0.
This condition is normally a basic design criteria; however, in some cases, it may be
desirable to determine the effect of certain symmetries. In studies where analytical
or closed-form solutions are a desired result, it is necessary to linearize the equations
(Ref. 18). Such situations are restricted to a solution for a particular type of problem
and are not readily adaptable to a variety of unexpected problems which typically arise
in the preliminary design phase. Where large highspeed electronic computers are
available, the best approach is to hold simplification to a minimum; then if simplications
are desired, certain parameters are simply set equal to zero. In cases where the
simplified equations cannot handle a particular problem, the zeros are easily removed
and no major modifications are necessary, Consequently, no further simplifying
assumptions are made concerning Equations 24 through 29, The purpose of this study
is not to establish any particular stability criteria (Ref. 19), but to establish a flexible
simulation applicable to the variety of problems encountered in preliminary design,

The complete equations of motion assumed in this study are established by formu-
lating the various forces and moments represented by the left-hand side of Equations 24
through 29, For this purpose, it is assumed that

-\ =\ TN e -F +F +F +F 30

1ZFX+JZFY+1{Z.FZ Fy + Fp + Fg + Fy (30)

-\ =\ =\ - M v M 31

121L+32|M+kZ‘N Mt M, + My (3L)
where

FM’ MM = miscellaneous forces and moments such as those resulting from thrust
misalignment or retro-rockets

TG = gravitational force
FA' MA: aerodynamic forces and moments

FT’ MT= forces and moments caused by thrusting action,
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It should be noted that there are no gravitational moments. since the origin of the
body axes is at the instantaneous center of gravity of the vehicle, Each of the forces
and moments will now be developed separately according to their source.

B. GRAVITY FORCES
The gravitational vector is referenced to the earth-fixed system and is

directed along the negative Zg axis. The transformation given in Equation 5 can be
used to resolve the vehicle weight into body-axes components as follows:

FG = - mg cos O cos ¥
X

FG = mg (cos O sin ¥ cos & + sin 6 sin 3) (32)
Y

FG = mg (sin 6 cos & - cos 6 sin ¥ sin @)
z

where g is the magnitude of the acceleration of gravity.

The introduction of 6, ¥, and ¢ into the equations of motion adds three unknowns
to the six basic unknowns defined earlier in Equations 24 through 29, The situation is
such that these are six equations with nine unknowns. Consequently, auxiliary equations
are needed to determine 6, %, and ¢ in terms of the basic unknowns. In Equation 10
it was shown that the time rate of change of the Euler angles can be expressed in terms
of the rotational velocity components p, q, and r. The Euler angles can thus be cal-
culated from the relations

e=f9dt+eo

Hf=fzirdt+wo (33a, b, c)

<D=f<1>dt+CDo

where €,, Vg, and ¢, are initial values and 6, ¢, and ¥ are given in Equations 10a,
b, c.
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C. AERODYNAMIC FORCES AND MOMENTS

The aerodynamic forces and moments can be formulated in terms of the
normal and axial force coefficients and the so-called stability derivatives. The aero-
dynamic forces and stability derivatives are usually referenced to either body or
experimental axis system, depending on model instrumentation or methods of calculation
(Refs. 9 and 13). In this study, it is assumed that all aerodynamic data are referenced
to the body axis system since the basic equations of motion have been established in
that system. Following the approach of References 7, 12, and 13, it is further agsumed
that all stability derivatives for large missiles, with or without non-symmetrical payloads,
are either zero or negligible except

Axial Force - ¢
Xy
P

Side Force - Cy

*y

Normal Force - CZ

Rolling Moment - c, > c,,C,

CZY “P “r
Pitching Moment - C , C
md m
P q
Yawing Moment - ¢ , C
nozY By

whereap and oy are the pitch angle of attack and yaw angle of attack (commonly referred
to as the angle of sideslip) as illustrated in Figure 4, These angles will be discussed
later,

The stability derivatives and the experimental and analytical methods for deter-
mining them are discussed thoroughly in the literature, particularly in many reports
published by the National Advisory Committee for Aeronautics (NACA) and later by the
National Aeronautics and Space Administration (NASA). The methods of calculating
the stability derivatives will not be discussed here; however, in any stability investigation
it is desirable to have specific analytical or empirical relations for calculating these when
experimental data are not available,

In more detailed stability and control studies, or when an attempt is made to
establish a general stability criteria (Ref, 19), it may be necessary to account for more
of the numerous stability derivatives. For this study, those listed above are sufficient,

19



e — — - - III—/ b
FX N
_ \ _ AN
o \
AN | AN
| N .
I NN e e
! Jﬂ/ N !
_ I N |
_ ~ |
_ AN a4
U R o
o /
AN =~ - N
AN _// & N
N\ | ™~ -
AN | mL /w.. N
AN ~
b N
fad
=}

VR

ILLUSTRATION OF AERODYNAMIC ANGLES

FIGURE 4.

20



Standard NASA notation is employed (see List of Symbols) in defining the stability
derivatives. The so-called static derivatives are simply partial derivatives with respect
to a particular variable., For example

where Cy is the normal force coefficient,
The dynamic stability derivatives, in which the variable in the denominator of the

derivative is associated with motion, and nondimensionalized by multiplying the partial
derivative by the parameter 2VR/D where VR is the resultant flow velocity., Thus

.. <2VR> acm\
mq D aq /

3C
- m
d (LD
2V,

where C, is the pitching moment coefficient,

The convention is adopted that drag, side, and normal forces are positive along
the negative X, Y, and Z axes. Thus the aerodynamic equations are

= - ]
FAX (cX + CX ocP) q's (34a)
0 0
P
F =-2¢C o ! 34b
A v % q's (34b)
Y
F =-¢ Q. ' 34¢
A, z, % q's (34c)
P 1]
oD
CP-CG P qD
AY | ZOLP P D mOLP 2VR mq ZVR qs D

. 34e
M = [C/G a, + ¢, (é%>+cﬂ @%>] q's D (34e)
A‘x ocY “p R~ r R
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z

M, = [ Cndy CZED CJP cc) ( > iq S D (34f)

where CP and CG denote the distance from a reference plane passing through the engine
gimbal points to the center of pressure and center of gravity, respectively. Furthermore
S and D are the reference area and diameter, respectively, and the dynamic pressure,

q', is calculated from

1
' - = 2
a 2 P VR

where p  is the free-stream density and Vp is the resultant flow velocity.

The aerodynamic forces and moments are seen to be dependent upon the resultant
air-flow velocity. In the absence of wind the velocity of the vehicle relative to the
earth-fixed system, V, and its velocity relative to the flow, VR , are equal in _r__nagnitude.
Since the basic equations of motion are derived in terms of the components of V, it is

‘necessary to calculate VR to account for the possibility of wind.

Wind data are usually referenced to the earth fixed coordinate system. The wind
velocity can be broken into components XW wg? and Z wg along the Xg, Yg, and Zg
axes, respectively. These components can be resolved into the body axes system, using
Equation 5, and combined algebraically with u, v, and w to yield the respective components
of VR as follows:

0 - . j
u, =u-X sin9 cos ¥+ Y sin % - Z cos 6 cos ¥
wg wg wg
v_=v - X (cos 9 sin & - sin 8 cos ¢ sin ¥) + ¥ cos ¢ cos ¥
wg wg

+ ng (cos 6 cos ¢ sin ¥ + sin 6 sin 9) >(35a, b, c)

=
I

w - X (cos6c0s®+sin6.sinq>sindf)-Y sin ¢ cos ¥
wg - wg

- ng (cos 6 sin ¥ sin ¢ - sin & cos ) ‘ -/

In the presentation of wind data it is customary to list vertical gusts, Z and
the resultant wind parallel to the Xg - Yg plane, necessitating the calculation O%Xw
and ng. A scheme similar to that presented in-Reference 12 is convenient for w1nd
resolution in the Xg - Yg plane. The resultant wind parallel to this plane is denoted
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by Vy, whichis referenced to true north by the direction angle 6y (Fig. 5). The Xg
axis, corresponding to the desired launch azimuth, is referenced to north by the azimuth
angle, A,

From Figure 5 it is obvious that

w8y

where 7y is introduced as a means of referencing Vyy to the Xg axis. Now it follows
that

Xwg = - Vw cos 7y
(36a, b)

ng = - Vw sin 7.,

The introduction of winds during launch creates large angles of attack (+90° for
vertically launched vehicles) which are beyond the range of linear aerodynamics. Non-
linear aerodynamic characteristics with respect to angle of attack are assumed to
simulate the launch motion under wind conditions. Furthermore, since Mach number
varies considerably during the flight of a vehicle, it is also necessary to consider the
variation of the aerodynamic characteristics with Mach number. Mach number is
determined by the usual relation

VR
Vs

M = (37)

where Vg is the speed of sound.

Referring again to Figure 4, the pitch and yaw angles of attack are seen to be
defined by

P tan'l<3&§>
u
R
v f' (38a, b)
. tan‘l<u—R> J
R

Q
I

9,
I
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The resultant angle of attack is determined from

VR2 + ng
= -1 e

where UR, VR» and wg are components of the resultant flow vector.

The time derivatives of the pitch and yaw angles of attack are needed in the
calculation of the aerodynamic forces and moments. From Equations 38a, b:

wou_ - u.w
o = R R = R _R) cos2a (40a)
P u P
R
Voou, - u_ Vv
b o= BB R R) 552 ¢ (40b)
Y w2 Y
R

D. THRUST FORCES AND MOMENTS

Before deriving the equations for thrust forces and moments, it is necessary
to adopt a sign convention and define several angles associated with the engine. For a
multi-engine booster, a number system must also be adopted to facilitate references to
a particular engine. For this purpose consider the typical engine arrangement for an
eight-engine booster shown in Figure 6.

In such an arrangement, the outer engines are usually the control engines while
the inner ones are held fixed. No restriction has been placed on the relative locations
of the control and fixed engines. For reference purposes, the control engines were
assigned odd numbers (1, 3, 5, 7, - - -) and the fixed engines were assigned even
numbers (2, 4, 6, 8, - - -). The only other restriction is that the complete arrange-
ment will be symmetrical with respect to the center line of the vehicle.

The angles associated with the engines, in both the initial and gimbaled positions,
are defined in the list of symbols. Using engine one in Figure 6 as an example, the
angles are illustrated in Figure 7. Note that the initial position illustrated is typical for
all engines, whereas the gimbaled position is applicable only to the control engines.

The sign convention adopted is such that positive BYT and BPT produce force
components in the positive Y and Z directions, respectively.
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FIGURE 6. TYPICAL ARRANGEMENT OF EIGHT-ENGINE BOOSTER
AS SEEN FROM REAR



The thrust force and moment equations can be derived by using engine one of
Figure 7 as an example, then amplifying to obtain the general equations for a multi-

engine vehicle.
From Figure 7 note that

BY = BY + BY (41)

Bp  =FBp +Bp (42)

where Py, and Bpi are the yaw and pitch gimbal angles measured from the original
canted axis of the engine. Note that an initial cant angle is not a restriction, but is
considered as the general case since rocket engines are quite often canted. The main
purpose of this is to direct the thrust of the engine toward the center of gravity at

liftoff, thus reducing moments that could occur in the event of engine failure in a multi-

engine vehicle.

Further relations which are either obvious from Figure 7 or easily derived are

tan 8 = tan B, cos P (43)
POl 01 o1
tan B = tan B.. sin B (44)
Y 01
01 Po1
l/2
tan g, = <tan2 BYT + tan® ﬁPT > (45)
1 1
1/2
tan B., = | tan® B + tan® B / (46)
01 Yo Po1 .
: 1 1
cos B = = 47)
01 1/2 , 175
(l + tanZBOl) /= 1 + tan@ B + tan?p /
Q\ Y01 Po1
1
(48)

cos B, = — /5
1 1 + tan® By + tanzgsP /
T Ty,



Initial Canted Position

Direction of Thrust Vector

Gimbaled Position

X

Gimbal
Point

Y

FIGURE 7. ILLUSTRATION OF ANGLES ASSOCIATED WITH INITIAL AND

GIMBALED POSITIONS OF ENGINE NUMBER ONE
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The angle Bpl is introduced as a means of quickly locating the thrust direction with
respect to the center line of the vehicle. Looking along the X axis in Figure 7b, ;3p1

is the angle between the X-Z plane and the plane containing the thrust vector and the X
axis. From this figure it is seen that

tan BY
T
1
tan B = T (49)
o1 tan BPT
1
and
tan BYOl
tan B = E;Efé-——' (50)
Po1 Pq;

The component thrust forces are easily developed for the engine in its initial
position, being simply

FT = Tl cos 601 (51)
X1
F =T, cos ., tan B =T, sin B,;, sin 8 (52)
TYl 1 01 ¥y, 1 01 P01
FT =T, cos Bop tan Bp = T, sin By, cos Bp (53)
Zl 01 01

where Ty is the thrust of the example engine,

The development of the forces for the engine in a gimbaled position is more
difficult. If the forces are formulated in their exact form, it is difficult to study the
resulting motion independently in pitch and yaw because of the dependency of B84 on
B Py and BY1 . For example, the exact form of the FTZ1 in a gimbaled position is

29



Ttan@ +B>
1. Pa1 By

F = (54)
1 [ /2
1 + tan® <B + B >+ tanZ <[3 + 8
Yor % Py Py

The dependency of F on B and Bp, is obvious. As will be seen later in
Tz, Y4 Py

the development of the control equations, it is desirable to have the engine pitch force
dependent only on the pitch gimbal angle B8p L and known initial values. The same
applies for having the yaw force component dependent only on known initial values and
the yaw gimbal angle, BY { The desired relationship for FTZi can be obtained by
assuming that its dependency on By { is negligible for reasonably small angles. For

this first approximation, Equation 54 becomes

T1 tan @POl + BP1>
F = - (55)

T 172
Z [1 + tan® By + tan® QBP + Bp )]
01 01 1

The desired result has been obtained since FTZ1 is now dependent only upon the initial
values and B p 1" The dependency is of a trigonometric form, however, making it

difficult to see readily the change in FTZ1 because of a change in Bp {
Suppose then, as a second approximation, it can be assumed that FTZ1 can be

represented by its value in the engine's undeflected position, given by Equation 55, plus

a linear gradient through BYi = Bpi = 0. In other words, it is assumed that

30



1
F =(F + 8 (56)
T ( T, ) S Bp P
tlg

The gradient of FTZ1 with respect to Bp { is obtained by partial differentiation of
Equation 54 with the result

tan® { B + B t)
<POl Pl T

T " 1+ tan® /B, + B +can2(s + B 1
Z < PO.'L Pl> YOl Yl>

o8
Pl cos?2 @P + Bp >[1 + tan® <BP + 5Y>+ tan® @Y + By )}l/g
o1 1 01 1 o1 1

For reasonably small values of the angles, this gradient can be assumed linear. At the
initial point of BYl = Bp =0 the value is
|

tan® B?
OL
° F, 1-Q+tan26 +tan2(3J> T
2y Py, P,

o B - :

Py 2 <: 2 2 ;) 1/2

cos< B 1 + tan® B + tan< B /
Poy Poy Y,

31



Making use of Equations 44 and 47, this is further reduced to

3B,  cos? By Cl - sin® By, cos® 6P01> T, (57)

Similarly the gradient of FTZ with respect to BY , evaluated at BY = Bp =0,
1 t 1 |

is
0 FTZ — sin® B,, co8 B sin B cos B
01
-1 o1 °r T, (58)
3B cos® B
Y, Yo1

For small initial angles, the cross coupling term represented by Equation 58 can be
ignored in comparison with the related term given by Equation 57. As a result, Equation
56 can bhe applied so that

[: cos ﬁOl <
F = [sin B cos B + —=—— {1 - sin® B cos® @ >B T (59)
T 01 <
z, Po1 0% Pp 01 Po1/ By 1

This expression of FT21 is also dependent only upon initial values and the pitch gimbal
angle, Bpi. In this case, as opposed to Equation 55, the dependency of FTZ1 on Bpi
is a simple linear relationship since the initial values are known and the coefficient of
Bp { is a constant, The relative accuracies of both approximations must be compared
with the exact value given by Equation 54. To make this comparison, typical values for
the initial cant angle must be assumed. Consider the case BYOi = EPOi = 3°, Knowing
these two values, the remaining initial values can be computed. Figure 8 shows the
comparison of the approximate and exact values over a wide spread of values for BY {
As indicated in the figure, B P4 values of five and ten degrees are assumed which
correspond to the lower and upper set of curves, respectively. The difference between

the first and second approximations, representing Equations 55 and 59, is seen to be
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less than one per cent for Bpi = 10°, with the first approximation being closer to the
exact value. Because of this small difference, the second approximation is used to
take advantage of the straightforward expression.

Referring again to Figure 8, it can be seen that for values of By 4 up to ten
degrees, the error involved in using the second approximation amounts to only three
per cent for Bpi =10° , and less than three per cent for BPi = 5°, For values of

By { exceeding ten degrees, the error increases at a moderate rate. A gimbal
angle of ten degrees is conservative for most vehicles and use of the second approx -

imation is justified.

The remaining forces and moments caused by thrust are developed under the same
assumptions. Following the procedure applied previously to the pitch force, the yaw
force is found to be

cos 601 o 5
_ [ . b (1 - sin® gy stn®p, ) T
FT [%1n Bop sin Bpol - By (: 01 Po1 BY& 1 (60)
Yy 01
The exact form for the axial component of thrust is
FT =T cos Bl

1/2
1
1 + tan® (B +B>+tan2<ﬁ + B :l
[ <Y01 Yy Po1 P1>

For this component, the pitch and yaw gimbal angles share equal importance so that the
one cannot be neglected in favor of the other. To avoid this double dependency, both
By { and Bp 4 can be neglected for the angular magnitudes normally encountered. The

axial component thus becomes

F = Tl
T 1/2

X
1 + tan® B + tan® B t)
( Yo1 Po1

which, by use of Equation 45, reduces to
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F = co
TX Tl s 6Ol (61)

Equation 61 is identical with Equation 51 which expressed the value of FTX in the engine
1

undeflected position, Ignoring the effect of B and Pp, upon F is thus tantamount
Y4 Py Txy

to assuming that the change is negligible in the axial component of thrust because of
gimbaling.

The development of the thrust force component for the example engine has been
completed. It should be emphasized that, although a particular engine is used in the
development, the results are applicable to any engine no matter what its location relative
to the vehicel center line may be, so long as the sign convention specified is used. Thus
for the general case Equations 59, 60, and 61 can be written as

F = Tn cos Bon

cos 50n
F = in sin + — <l - sin® B sin® B > B T
T s Bon Spon c052 By o Y |'n

n
n on

cos Bon <:
= lsi 08 4 —=22— (1 -sin®?p cos?B B T
FT sin ch c Bpon cos? BY on Pon P n

n on

where the subscript n refers to a particular engine (n=1, 2, 3, 4, - - -). Earlier it
was specified that all fixed engines would be identified by even numbers. Therefore for
n, an even number, the gimbal angles BY and Bp_are zero and terms involving these
variables have no meaning. The summatlon of components for all engines of a multi-
engine vehicle can be written
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F., = Z Tn cos B (62)
1

on
TX
o
F =211 T sin B sin B
TY 1 on
n
v Bonc ( (63)
+) —=—— {1l -sin® B sinZ B T B
/., cos By on_ Pon n, Y,
1 on [ C
C
iy
F ) lT n P cos B
= si
T, L n on
1
n
(E Ccos Bonc <:
+ ) —=———\ 1 - sin® B cos® B T B (64)
/. cos® Bp on Pon n "B
1 on c c
C
where n again refers to any particular engine, control or fixed, and nc (no=1, 3, 5, - - =)

refers to control engines only. Note that the first summation term in both Equations 63
and 64 will be zero if the engine arrangement is symmetrical with respect to the center
line and all engines perform as expected. In case of engine failure or thrust misalignment,
however, biases are created which result in an unbalance of forces and moments. Thrust
misalignments are not considered in the development of the thrust equations but a term is
included in the general equations of motion to account for such misalignments.

Since all the initial values are known in Equations 62 through 64, the equations can
be expressed in a simpler notation by grouping certain constants. For this purpose, let:

IS( = cos Bon

ln

N

sin sin
Boy Sin B
in on
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Then Equations 62 through 64 can be written in the simplified form

n
= K T 6
FT Z % n (65)
X T in
n
rn ,,C
1 \ﬂ
= 66
Foo 2 K, T, +Z,I Ky T By (66)
Y i in I an, c n.
n
n <
_ 67)
Fo | KZ T, +§’ K, T. Bp (
Z i in 1 an, c n,

The components of the moment caused by thrust are developed in 2 manner similar
to that used above for the force components. In the development of the pitching moment,
for example, it is assumed that

3 My

where engine number one is again used for illustration. The gradient term is again
as,sumed linear and evaluated at the initial condition BY { = ’SP { = 0. Furthermore,

crosss-coupling terms are found to be small for the gimbal angle range of interest and
cons:equently are neglected. Thus pitching moments caused by thrust are assumed to

be dependent only on pitch gimbal angles and yaw moments dependent only on yaw gimbal
angleis. It is also assumed that, except for an engine malfunction, the summation of
thrust moments are zero when none of the engines are in a gimbaled position. Under
these as:sumptions, the pitch and yaw components are found to be
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n C
M, =;{an<:§GKM - R K \:>-+§{j T <§% K, + COK, ':)sp (68)
Y I 2n in 1 c C  4ng 3n n,
n
& ‘ C
M, =21}Tn(:%n R, - COK j>-+§{j T (}%1 Ky - ccxznt> B, (69)
Z I in an i < ¢ ang c n,

where Ry, is the perpendicular distance from the vehicle center line to the gimbal point
of a particular engine, and

v

co COs
s Bon P
in on

cos Bon tan BP

M

>n on
sin 2
cos Bon Bonc
[¢ _ 2
KM = — 1 —  cos B tan 6on
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cos Sonc si 5onc
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cos Bonc sin Zﬁonc sin Bpon
2 cos® BY

4nc on
C

Y

The production of rolling moments with thrust vector control is also necessary
for asymmetric configurations to counteract induced aerodynamic rolling moments.
In a later development of the control equations, it is assumed that when only pitch forces
and moments are produced by thrust gimbaling, all of the pitch gimbal angles of all
control engines are equal. The same applies to yaw forces and moments produced by
yaw gimbal angles. If this restriction is maintained in the overall control of the vehicle,
it is impossible to produce rolling moments, except in the case of a malfunction, because
of the earlier restriction concerning the symmetry of the engines. Therefore to produce
coordinated rolling moments, certain pairs of engines must gimbal with equal magnitudes
but in opposite directions. This will be taken into account in the control equations. For
practical multi-engine configurations, roll rates should not be severe so that large
rolling moment corrections are not needed. Thus it can be assumed that roll control
can be accomplished by either pitch or yaw gimbaling independently.

Following previous procedures, the general expression for thrust rolling moment
was found to be

n
C

n
M, = cly% Ro KL ) T R, KLm 23
a1 3n 1 c C (70)

n
C

n
- +
CEZiJTn Rn.KL ;;J Tn Rn KL BPn
T in < < eng c

where Cy and C; are so-called ""go-or-no-go' constants. For pitch gimbal roll control,
Cy = 0 and Cy = 1 and vice-versa for yaw gimbal roll control., Also

= cos tan in
KL Bon BP ® B
in on on
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cOs tan cos
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=n on on
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cos cos
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c on
= ' 1 - sin® sin?
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The thrust in all previous equations is assumed to be a function of time to simulate
thrust build-up and decay with altitude. The altitude correction is given by the usual
relation

e

= - A
Tn Ton + (Po Pw) en

where Tgy is the thrust of a particular engine at some reference pressure P,y, Agp is
the nozzle exit area, and P,, is the trajectory free stream static pressure, It is
assumed that the thrust of all engines is measured at the same reference pressure,
and that each functions ideally or not at all,

E. MISCELLANEOUS FORCES AND MOMENTS

In the formulation of the general equations of motion, it is virtually impossible
to account for all possible sources of external forces and moments. Forces and moments
caused by thrust misalignments, fin deflections, or retro-rockets, as a few examples,
are not considered in detail. Consequently, as a means of making the equations as general
as possible, a miscellaneous term is added to each equation. Thus,

N i FXM +3 F, + k F
M M (7la, b)
TLM+3 + kN

I My M
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The miscellaneous terms can be either constant or time variant. Actually the term
FXM is needed in the axial force equation to balance the gravitational force at time zero.

At this point, as will be seen later, the axial force equation reduces to

FXM =mg

F. GENERAL EQUATIONS OF MOTION

(72)

The general equations of motion are obtained by summing the X, Y, and Z

components of the various forces and moments, and substituting on the left-hand side

of Equations 24 through 30, The general equations are

n
- ' -
FXM Gxo + Cy >q8 mg cos 6 cos Uf+lTnIS(
I 1

OfP n
=m (U + wq - vr) (73)
F -C ., q'Ss + mg (cos 6 cos & sin ¥ + sin 9 sin @)
YM YaY Y
n
n ‘ﬁc
3 - - - - 0
+ZTH Ki +Z__, Tn KY BY m (v + ur - wp) mrr (74)
1 in 1 c 2n, nC
F, - CZ Qp q'S + mg (cos ¢ sin 6 - sin ¢ sin ¥ cos 0)
y %y
P
n
n C
) = o - "
+ZTH KZ +Z’ Tn Kz BP m (w + vp - uq) +mq T
I in 1 ¢ an. nC
n
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I
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Y
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M .Tn RnKN CGKN +Z Gn KN )Tn BY rZ
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+ pq (IY IX) + {qr P) IXZ + (q© + p=) IXY rIXZ + pIXZ

i

+ mr rZ (78)
ex

Table 1 is included as a convenient reference, listing all inputs to the equations
according to the independent variables of which they are a function,
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TABLE 1

PROGRAM INPUTS

Inputs which are a function of time only are

I I

P Ty T e e e ™R o Ty T Te T T
M

Lvr Iyze Ixzo Ixye Tyze Txzo Ton Aonr CCs Ty 2oy

20p> 1y° 21p> oy’ Pop’ Moy’ Pop’ Zer O e

Inputs which are a function of Mach number only are

C
XO

Inputs which are a function of altitude only are

are

are

Inputs which are a function of total angle of attack are
CP

Constant inputs are

C C P > s > KL > KM ’ KM
l’ 2’ 0’ KLln IQLgnC 1(1_13n an, 1n on
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TABLE 1 (CONCLUDED)

. o™ R R R R KR R
3n, 4n, in an sn, an, in in

I% 3 KZ b KZ 2 I<R b D’ S’ g’ Rn’ 7\

n
2nc in 2nC c

Initial values of the basic variables are

o0 Yo Voo Por 90 Too XKeh Vg, 28, Vo, 0, w




SECTION IV, CONTROL EQUATIONS

The six general equations of motion representing the six degrees of freedom of a
rigid body given by Equations 73 through 78 contain 11 unknown variables, namely the
linear velocities (u, v, w), the rotational velocities (p, g, r), the orientation angles
( 9, ¢, ») and the gimbal angles ( BYn , Bpn ). The auxiliary relations, given by

C c

Equations 33 a, b, and ¢, determine the orientation angles. Two additional equations are
needed to match the number of equations with the number of unknowns. These additional
relations are the control equations which can be employed for the determination of the
gimbal angles.

The control equations have a tremendous influence on the eventual motion of the
vehicle. The physical behavior of a vehicle without control varies considerably during
its flight because of variation in the vehicle's mass and its aerodynamic characteristics.
The control system has to be adapted to these variations which are often not accurately
known. Control requirements for a given configuration are dependent on the mode of
operation of the control system. This will be discussed in more detail later.

One of the basic assumptions of this study is that the vehicle is considered a rigid
body. However, deformation of the vehicle under the influence of aerodynamic and
maneuver loads, together with propellant sloshing, creates interactions between the
associated modes of motion which require more complex analysis. Interaction between
motions around the three body axes is usually small since the control system keeps
angular velocities and deviations small. For preliminary design purposes the control
equations can be assumed to contain only linear functions of certain control variables,
with coupling in the control system ignored. Consequently, it was assumed that yawing
motions are controlled by yaw gimbaling and pitching motion of pitch gimbaling. As
mentioned earlier, it is assumed that roll control can be accomplished by either pitch
or yaw gimbaling. In this study, it is further assumed that the vehicle is equipped with
an attitude reference system and an angle-of-attack meter so that the control variables
are the attitude angles and angle of attack. Under these assumptions, the general control
equations are

---+ A26Y + AlﬁY + BY = f(?b", OY’ o, {U; C.XY) @ ""')

n n n
C C C

--—+ BB, +Bip, + 8 = £(6, ap, @, 9, Oy @ ---)
nC nC nC
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Path control, in which displacement variables and their derivatives are included
among the control variables, usually has little or no effect on the gimbal angle require-
ments and can be neglected in initial studies (Ref. 4).

The control equations are idealized by neglecting derivatives of the gimbal angles
on the left side which produce phase lags but are not important for basic studies (Ref. 2).
Furthermore, all derivatives of the control variables are neglected in this study except
the first derivatives of ¥ and 9. The control equations can now be written in this form

BY = adY ¥+ alY T+ bOY OLY + hOY (q)-cpc)
. (79a, b)

Bpn = ap (e-ec) + a11> (e—ec) + bOY o + hOP (cp-cpc)

where the coefficients of the control variables are the so-called control gains and the
variables with the subscript ¢ indicate the desired value of that variable when the desired
value is not zero. If the desired value of a variable is assumed to be zero at all times,
no such term is necessary. As an illustration, consider the yaw control equation. If

a solution of the general equations of motion indicates the vehicle is yawing, the yaw
angle ¥ is amplified by the gain factor agy and a yaw gimbal angle is created to correct
the yawing motion. In the pitch plane, however, the trajectory is normally tilted so that
the desired value of the pitch angle, 6., is not zero at all times. Thus if a solution of
the equations of motion should indicate that the actual pitch angle 6 is not equal to g,
then a pitch gimbal angle is initiated and the trajectory will be corrected. The desired
value of the roll angle, ¢, is normally zero except in cases where launch equipment
restricts the alignment of the vehicle so that a programmed roll is necessary. All the
control gains and the desired trajectory parameters are time variables.

Using Equations 79 a and b for control, the simulation established in this study
can be used for two specific types of problems. In the first case, completely arbitrary
control gains can be assumed and the resulting dynamics of the vehicle determined. In
the second case, which is the one encountered more often, the control gains are established
according to some preset relation determined by the desired motion of the vehicle during
flight. The establishment of a control program by which an otherwise unstable vehicle
is stabilized is commonly referred to as artificial stabilization. As indicated earlier,
the control modes capturing the most interest at present are the drift-minimum principle
(DMP) and the load-minimum principle ( LMP). Both principles are discussed in detail
in References 3 and 6,

The DMP is simply a control program which minimizes the dispersion of the vehicle,

in both the pitch and yaw planes, in response to a wind shear. This is accomplished by
forciig the vehicle to assume an attitude which leads to the approximate cancellation of
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forces perpendicular to the undisturbed flight path. The wind induced oscillations and
accelerations approach zero and a component of thrust against the wind cancels the lift
and side forces. Although a detailed derivation of the DMP is given in References 3
and 6, a short derivation is included here because of differences in sign convention and
basic definitions. In the development of the DMP, it is assumed that the vehicle is not
rolling and that control in the pitch and yaw planes can be analyzed independently. Con-
sidering then the motion in the pitch plane with a wind shear imposed on the vehicle, it
is assumed that the wind is horizontal so that the resultant wind in the pitch plane, for
small values of ¥, is Xwg (Fig. 9).

Referring to Figure 9, let

6 -6 =28
¢ (80a, b)
Xg - Xg = OXg

where &, and Xg are the desired pitch angle and the desired rate of change of range,
respectively. Also from the figure, for small angles

_ OXg
a, +op =S50 (81)

where O‘wp is the wind angle, having the approximate value

Xwg
104 B

wP \Y

Consequently Equation 81 can be approximated by
DXg - Xw

a, = —Vg - 29 (82)

The incremental motion in the Xg direction can be approximated by
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FIGURE 9.
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1 2n C n

C
C

In the derivation of the DMP, it is assumed that rolling motion is small and can be
neglected; hence By and Bp are the same for all engines.

The incremental pitching motion can be approximated by

n

(A

C

i 'S (CG- Y
T, c, 4q's (CG-CP) a, zJCG K, T Bp (84)
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From Equation 79 b

BP = aOP NS+ a1P NG + bOP aP

n
Cc

where rolling motion is again neglected.

Substituting Equations 82 and 87 into Equation 86 gives

" . NXg - X
2 + [ . -4
Cop 21p 2 + [Cop (2gp bop’ * C1p| &8 v (c

or

MXg - X 09 +C A -
&~ Xog 2p Y1p Ezp (3pp = Dop) + Clp:l 20

- b

v - -
Cip = Cop oP

Substitution of Equations 82, 87, and 88 into Equation 85 gives

50

1P

(85)

(86)

(87)

C2P bOP)

(88)



For DMP it is assumed that
Xg = A9 = - I 0

so that Equation 89 becomes

1 [j _
a_ (C._k, -C._ ki, _)+Kk_ (C,-Cypb %] 28 = 0
_ 1 2p “2p 1p C1p - Cop Pop
C5 - Cpp Pop oP P “3p

Since

1
# 0
C1p - Cop Pop

then

agp (C1p K3p = Cop Kop) + Kyp (Cyp -

which can be expressed in the form

C Cc
1p Py

c.. “3p” “op
0P Cop 2p (90)

oP 1p

Equation 90 represents the drift minimum condition and is identical with that derived
in References 3, 4, and 6 except for certain differences in signs. These sign differences
are solely caused by the sign conventions used here and do not detract from the basic
principle involved. Equation 90 can also be derived as shown in Reference 6 by establishing
the characteristic equation of Equations 86, 87, and 88, and examining the roots in detail
as a check on the validity of the assumptions made. Such detail is not necessary here,
since the basic principles are well known,
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The DMP condition, represented by Equation 90, is not sufficient for determining
the magnitude of the gains agp and bOP but only indicates the linear relationship between
them. Consequently another relation is needed to determine their values. By virtue of
the DMP condition the translational path dispersion is practically eliminated (Refs. 3 and
6) so that the rotary motion of the vehicle about its center of gravity is predominant,
Equation 89 is a linear differential equation describing the rotary motion in response
to wind disturbances. From this equation, the undamped natural frequency of the rotary
motion is found to be

1/2

C., +C (a - b )
¢ = 1P 2P “"OP 0P (91)
nP
2n
so that
2 £ )¢ -¢
a - b - nPC 1P (92)
op op 2P

The frequency has a definite influence on the control requirements. Care must be
taken to insure that the frequency is not so low that it corresponds to the bending
frequencies of the vehicle to give resonance effects. The high values of frequency are
bounded by the limitations of the control system hardware. Frequencies currently being
used range from about 0.2 to 0.9 cycles - per - second. As is pointed out in Reference 2
the optimum control frequency for a particular vehicle depends on the characteristics of
the wind disturbances encountered. Once the frequency is established, or assumed,
Equations 90 and 92 can be combined to determine the values of 2op and bop. Adding
the two equations gives :

=
_ (2n fnP) (93)
a =
OP k k
C. (1 + 2P y - 3P
2P kip kip 1P

Once app is determined Equation 92 can be used to calculate bgp.

The value of ajp for the DMP is determined by the damping of the rotary motion
about the center of gravity. The ratio of damping to critical damping is found from
Equation 88 to be

_ S %1p (94)

d
P %4 fnP
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so that if the frequency and damping are known a4 p is readily determined. A typical
value of £ is 0.75.

The lateral control gains for the DMP are established by identical procedures with
those employed above. Thus analagous to Equations 91, 92, 93, and 94, it was found
that

R e b
oY G C 3Y 2Y
2y _ C2¥ (95)
2oy K1y
Gy * Coy oy - Poy) (96)
f =
nY 21
(2n £ )%
a = nY 97
oY 7k K
C 1+._2X. __:_ilc
2Y kiy kg WY
C a
oy 1Y
CY_lntf (98)
nY

When the DMP is applied, attitude deviations are small and the resultant angle of
attack does not approach zero when wind disturbances are encountered. As a result,
normal loads are imposed on the vehicle. In some cases these loads may be beyond
the design limit of the vehicle and the DMP cannot be employed. The angle of attack
can be reduced by reducing agy and agp since this allows greater path instability. The
extreme is reached when agy and agp are equal to zero (Ref, 3). In this situation, the
vehicle turns its nose in the resultant flow direction like a weathercock stable vehicle
without special attitude control so that attitude deviations of the vehicle may be large.
Since the angle of attack, and thus the aerodynamic loads, approaches zero in this extreme
case, this is commonly referred to as the load-minimum principle (LMP). This approach
may be indicated for large, highly unstable vehicle configurations where tremendous
control torques and structural loads are involved (Ref. 2). If proper guidance equipment
is available, the deviation of the flight path in the presence of wind is of little concern
since it can be compensated for by guidance induced maneuvers during the latter part of
propelled flight when the vehicle is relatively insensitive to aerodynamic effects,

53



If agp and 4y are set equal to zero in Equations 92 and 96, it is found that

- o
ClP (2x fnP)

b = (99)
op C,p
- 2
B G
boy = = (100)
2y

Note that the load-minimum principle is not a zero load condition but represents
the least amount of load that can be associated with the DMP. For a given vehicle,
however, there is a specific frequency at which the LMP does reduce to a zero-load
condition,

The strong influence of Cip> C2p, Cyy, and Cay on both the DMP and LMP is
obvious. The parameters Cip and Cap are the specific aerodynamic restoring torque
and the specific control torque (pitch plane), respectively, while Ciy and Coy are
identical parameters for the yaw plane. The fact that all four parameters are determined
solely by the characteristics of the vehicle and its trajectory is illustrative of the inter-
play between design and control,

Since it is assumed in the development of the DMP that roll can be neglected, the
roll control gains hgy and hop remain undefined. Also no guarantee has been made
that the DMP or LMP gains satisfy the stability conditions of the servomechanisms
employed in the control system (Refs. 20 and 21). This requires a more detailed
analysis, In view of this uncertainty it is assumed that arbitrary values for the roll
gains can be chosen in any particular investigation, with the actual values being deter~
mined by the limitations of the control system hardware,

The general equations of motion are formulated so that roll can be controlled by

either pitch or yaw gimbaling., In some cases it may not be necessary to use all engines
for roll control. For this reason the control equations are now written in the form

Y T AV ta+ bov?y + KRn oy (@ - @) (101)
C

P~ %p @0 +a, (@-0)+ Pop%% * KRn Bop (2 - 0 (102)
C C

where the constants KRn are roll proportionality constants taking on values of zero, or
C

plus or minus one. If the value is zero then the engine to which it is assigned does not
participate in the roll control. Once it is established which engines will be used for roll
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control, the engine arrangement must be analyzed to determine which will be assigned
a plus or a minus one value. The plus or minus one value simply causes certain engine
pairs to deflect with equal incremental magnitude but in opposite directions so that roll
restoring moments are initiated.

SECTION V. SOLUTION OF THE EQUATIONS

Once the vehicle data is established and the initial conditions are specified, the
general Equations 73 through 78 can be solved for u, v, w, 13, d, and r. These, in turn,
are integrated to obtainu, v, W, P, q, and r. The earth-fixed acceleration components
can then be calculated by applying the transformation given by Equation 7. The body

axis components should include both linear and rotational accelerations. Thus,

Xg dyy dez d=y U+ wq - VT
Yegi = |da2 doo d'32 v + ur - wWp (103)
Zg di3 doz d33 w+ vp - uq

The earth-fixed velocity and trajectory geometry components are obtained by
singic and double integration of the respective acceleration components. Once this
much ot the basic information has been obtained, the remaining variables, such as angle
of attack, Mach number, gimbal angles, and Euler angles, can be calculated from the

various auxiliary equations.

One point of importance should be made concerning the gimbal angles. The initial
cant angles, Bop: and the resultant gimbal angles, Bnc, used in the general equations

are referenced to a line parallel to the vehicle center line. The engine gimbal angle

measured from the initial canted axis ( Fig. 7) may be of more physical interest since

this angle is limited by auxiliary engine hardware or vehicle performance. Defining
B},C as the gimbal angle relative to the canted axis, Figure 7 determines that

(104)

cos 5;1 = sin B __ sin B cos(Bp - Bp ) + cos B_~ cos B,

C (&) C n on C
’ - C Cc

o4

SECTION VI. NUMERICAL EXAMPLE

A ficticious vehicle is now formulated as a means of illustrating how the simulation
developed in this study may be used in making a stability and control investigation. A
prief analysis is made to determine the gimbal angle requirements, and related performance
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parameters, for the drift~minimum and load-minimum control modes, Typical results
are shown and compared, where possible, with two-dimensional results for the same
vehicle characteristics. Past experience has shown (Refs, 4 and 5) that the maximum
gimbal angle requirements occur when a vehicle is disturbed by a high velocity wind
shear in the region of maximum dynamic pressure. Consequently the numerical
example will be restricted to the maximum dynamic pressure region of the assumed
vehicle trajectory.

A vehicle having eight engines arranged and numbered as shown in Figure 6 is
assumed, with the four outboard engines having gimbal capability, The thrust and
nozzle exit area of all engines are the same, and the gimbal points are in a plane
perpendicular to the vehicle center line . The total sea-level thrust of the vehicle is
1,500, 000 pounds corresponding to a liftoff weight of 1,000, 000 pounds. An instantaneous
thrust build-up is assumed for simplicity so that Ty, is constant with time, A thrust
duration of 120 seconds is also assumed. The initial cant angle B,,, are 4° and 6° for
the inboard and outboard engines, respectively. From Figure 6, the following angles
defining the initial thrust direction of each engine are obvious.

B = 45° B, = 2257
Por 05

B = 90° p = 2707
p02 p06

B = 315° Bp = 135°
Pos o7

8 =0 B = 180°
Pos Pos

The outboard engines lie on a circle about the vehicle center line such that
Ry =R3; = Rs =Ry = 8,5 feet

Similarly,
Ry =Ry =Rg =Ry = 3,5 feet

Roll control will be provided by yaw deflections of the control engines so that
(Eq. 72):
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From Figure 6 note that a yaw deflection of engines one and three in the negative
direction would tend to correct a positive roll, while a positive yaw deflection would
be needed for engines five and seven. Thus, assuming that all of the control engines
share in roll control, the roll proportionality constants are (Egs. 102 and 103):

=K. =-1
KRl R3
KR =% =1
5 7

The mass, center of gravity, inertia, and thrust moment arm characteristics of
the assumed vehicle are shown in Figures 10 and 11, It is assumed that all the mis-
cellaneous forces, such as Fy, ., are zero. The assumed aerodynamic characteristics
of the ficticious vehicle are shown in Figures 12 through 15. Since the current example
is limited to the region of maximum dynamic pressure, the angles of attack will not be
large and most of the curves shown do not consider the variation of the aerodynamic
parameters with angle of attack. Figure 13 illustrates the more general case, although
the curves shown for large angles of attack are not needed for this example. A double
iteration procedure is employed in the simulation when both the Mach number and angle~-
of-attack variation of the aerodynamic parameters are considered (Ref. 9).

The desired (no wind) trajectory parameters in the region of maximum dynamic
pressure are given in Table 2. The desired roll angle, 1 ¢, is zero for the entire flight,
The desired flight path angle, 5, and its first time derivative are the only parameters
shown in Table 2 that are required inputs to the control equations.

The desired launch azimuth is due east from Cape Canaveral, Florida so that
A= 90°

Typical wind profiles and wind shear data for Cape Canaveral are given in Reference
22, A typical wind profile is shown in Figure 16. It is assumed that the vehicle formulated
in the present examy » must be designed to fly through the wind shear represented by this
profile. The assumed wind profile is designed so that the maximum wind velocity corre-
sponds to the same altitude at which the vehicle encounters maximum dynamic pressure
(Table 2). The wind shear is assumed to have an 8.5 second build-up; consequently,
the vehicle enters the shear at t = 51, 5 seconds, which is assumed to be the starting
time for calculations made in this example. The initial conditions of the desired tra-
jectory are thus
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t = 51.5 sec
o
u_ = 1190.8 ft/sec p =0
o o
v =0 q_ =-0.0091 rad/sec
o o
w = 14.8 ft/sec r =0
o o
X = 6920.6 ft ¥ =0
go o
Y =0 8 = 23.76°
go o)
YA = 26191.0 ft ® =20
go o)

The drift-minimum attitude and angle-of-attack control gains can be calculated
from Equations 92, 93, 96, and 97, and are shown in Figures 17 and 18 for several
undamped natural frequencies of the control system. The attitude control gains are
zero for the load-minimum principle. The load minimum angle-of-attack control gains
can be calculated from Equations 99 and 100, and are shown in Figure 19. The attitude
rate control gains are the same for the LMP and the DMP but are a function of the
damping ratio. In this example, it is assumed that the pitch and yaw damping ratios
are equal. The attitude rate control gains calculated from Equations 94 and 98 are
shown in Figures 20a, b, and ¢ for several assumed damping ratios.

Initial calculations are made for both drift-minimum and load-minimum control
under the following assumptions:

fnY = fnP = 0.5 cps
QY = gP = 0.75
Gw = 180°
a
boy = 2
h = —OP
opP 2
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The assumptions concerning the roll control gains hoy and hpp are completely
arbitrary. A direct side wind ( Ow = 180°) is selected to facilitate the comparison of
the current calculations with the results of a typical two-dimensional simulation. The
two-dimensional analysis accounts only for normal and axial aerodynamic forces which
are assumed constant.

The drift-minimum control requirements are examined first, Figure 21 shows the
time history of the gimbal angle and lateral acceleration in response to the assumed
wind disturbance, In this and succeeding figures, time is assumed to be zero at the
instant the vehicle encounters the wind disturbance. In other words, zero time corre-
sponds to the actual flight time of t = 51, 5 seconds with maximum dynamic pressure
occurring 8. 5 seconds later. The finite gimbal angle shown in Figure 21 for the present
simulation at zero time is the value required to fly the desired trajectory without wind
conditions. Calculations are stopped when the variables approach steady-state conditions
Time histories of the yaw angle and angle of attack, for drift-minimum control are shown
in Figure 22.

Application of the load-minimum principle yields similar results as shown in
Figures 23 and 24. Load-minimum control reduces the gimbal angle and angle of attack
as compared with drift-minimum control. The yaw angle and lateral acceleration are
larger and continue to increase rather than approaching a steady-state condition, thus
indicating path instability.

The results of the present analysis are in general agreement with two-dimensional
results for both control principles. This indicates that the two-dimensional analysis gives
satisfactory results when the disturbed motion of the vehicle takes place primarily in
one plane as it does in the case of a direct side wind.

The time histories of the gimbal angle calculated from the present simulation are
not associated with any particular one of the four control engines of the assumed vehicles;”
rather the maximum value at each instant of time is used. However, since the gimbal
angle relative to the initial canted axis is shown, the value is the same for all four engines
except for small differences necessary for roll control.

The roll angle of the assumed vehicle is negligible with both load-minimum and
drift-minimum control for the case of a direct side wind. The dispersions of the flight
path angle and longitudinal acceleration are shown in Figure 25. For the case of a side-
wind the two~dimensional analysis neglects motion in the pitch plane; hence no comparison
can be made for the pitch plane variables.

All of the results shown thus far are for a frequency of 0.5 cycles per second. The
effect of frequency on the maximum values of lateral acceleration, yaw angle, gimbal
angle, and angle of attack are shown in Figure 26 for drift-minimum control. Similar
results are shown in Figure 27 for load minimum control, Values for yaw angle and
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lateral acceleration are not shown for load-minimum control since they increase con-
tinuously and consequently have no maximum value ( Figs. 23 and 24). The two-
dimensional results here are generally conservative as compared with the results of the
present analysis. A notable exception is the yaw angle with drift-minimum control,

the two-dimensional analysis predicting 20 per cent lower values (Fig. 23).

The effect of wind direction on the lateral-acceleration is shown in Figure 28 for
both control principles. Similar variations for gimbal angle and angle of attack are
shown in Figure 29. The case of a failure of engine number one (Ty = 0) is also
considered in Figure 29. All of the curves shown in Figures 28 and 29 have mirror
images for the other 180-degree range of wind direction except for the curves con-
sidering engine failure.

It is apparent from Figures 28 and 29 that the maximum points on the curves are
not coincident with a direct side wind ( fw = 180°) as is sometimes assumed. For the
present example, however, the maximum values are not significantly different from
those corresponding to a side wind.

A significant roll angle results in the case of engine failure, for some wind
directions. The range of the roll angle for Oy between 90 degrees and 270 degrees for
the assumed vehicle is as follows:

- 1.20° <0 < - 2.76°

It is beyond the scope of this example to consider all of the possible variations
and combinations of the parameters involved. A complete stability and control inves--
tigation of any vehicle requires a tremendous volume of charts and calculations. While
the results shown are brief, they illustrate the application and flexibility of the simulation
developed in this report, The simulation should be restricted primarily to first stage
flight because of the assumptions of a non-rotating, flat earth and a constant acceleration
of gravity.
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